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ABSTRACT

Soil moisture observations from seven observational networks (spanning portions of seven states) with

different biome and climate conditions were used in this study to evaluatemultimodel simulated soil moisture

products. The four land surfacemodels, includingNoah,Mosaic, Sacramento soil moisture accounting (SAC),

and the Variable Infiltration Capacity model (VIC), were run within phase 2 of the North American Land

Data Assimilation System (NLDAS-2), with a 1/88 spatial resolution and hourly temporal resolution. Hun-

dreds of sites in Alabama, Colorado, Michigan, Nebraska, Oklahoma, West Texas, and Utah were used to

evaluate simulated soil moisture in the 0–10-, 10–40-, and 40–100-cm soil layers. Soil moisture was spatially

averaged in each state to reduce noise. In general, the four models captured broad features (e.g., seasonal

variation) of soil moisture variations in all three soil layers in seven states, except for the 10–40-cm soil layer in

West Texas and the 40–100-cm soil layer in Alabama, where the anomaly correlations are weak. Overall,

Mosaic, SAC, and the ensemble mean have the highest simulation skill and VIC has the lowest simulation

skill. The results show that Noah and VIC are wetter than the observations while Mosaic and SAC are drier

than the observations, mostly likely because of systematic errors in model evapotranspiration.

1. Introduction

Soil moisture information is valuable for weather and

climate prediction (de Goncalves et al. 2006; de Rosnay

et al. 2013; Koster et al. 2009; Yang et al. 2011), flood

control (Pal and Eltahir 2002; Martinis et al. 2009; Koster

et al. 2014), slope failure control (Ray et al. 2010), reservoir

management (Maurer and Lettenmaier 2004), geotechni-

cal engineering, water quality monitoring, and drought

monitoring (Atlas et al. 1993; Mo and Lettenmaier 2014;

Xia et al. 2014a). Soil moisture largely controls evapo-

transpiration (ET) and total runoff. Soil moisture also

controls the exchange of heat energy between the land

surface and the atmosphere by affecting latent heat and

ground heat flux. Ek and Holtslag (2004) have com-

prehensively described how soil moisture affects latent

heat, soil temperature, land surface temperature (up-

ward longwave radiation), and sensible and latent heat

fluxes from a soil thermodynamics viewpoint and how

soil moisture affects ET and total runoff from a soil

hydrology viewpoint. Simulations with numerical

weather prediction models have shown that improved

characterization of surface soil moisture, vegetation,
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and temperature can lead to significant forecast im-

provements (Case et al. 2011; Drusch 2007; Kumar et al.

2014; Li et al. 2014). Soil moisture has the potential to

impact convective precipitation by influencing energy

and moisture fluxes (Alfieri et al. 2008) and thus modi-

fying planetary boundary layer depth (Santanello et al.

2009) and atmospheric instability (Frye andMote 2010).

Soil moisture data mainly come from 1) in situ ob-

servations, 2) remote sensing information (satellite and

aircraft), and 3) climate and land surface models. The

North American Soil Moisture Database (NASMD)

contains data frommore than 27 observational networks

in the United States and Canada, comprising over 1800

stations observing in situ soil moisture. The database

includes soil moisture observations in a variety of soil

depths, with the majority of the data starting in 2000

(Ford and Quiring 2013). The International Soil Mois-

ture Network (ISMN) contains data from 35 networks,

which together include more than 1400 sites around the

world (Dorigo et al. 2013) with an hourly-to-weekly

temporal resolution. The ISMN data quality has been

assessed by Dorigo et al. (2013), and measurement er-

rors have been comprehensively evaluated by Gruber

et al. (2013). Although in situ observations are limited

and not spatially extensive, they are an indispensable

source of information to calibrate and validate satellite-

and model-based soil moisture estimates. The soil

moisture retrieved from satellite-based remote sensing

such as Advanced Microwave Scanning Radiometer for

EarthObserving System (AMSR-E; Reichle et al. 2007),

Advanced Scatterometer (ASCAT;Wagner et al. 1999),

and Soil Moisture Ocean Salinity (SMOS; Kerr et al.

2001) offer soil moisture observations at global and re-

gional scales; however, they measure soil moisture in-

formation in the upper few centimeters over sparsely

vegetated areas. Efforts are being made to extrapolate

these measurements to the root zone (Gao et al. 2007;

Reichle et al. 2007; Sabater et al. 2007; Drusch et al.

2009; Ford et al. 2014b). Soil moisture derived from

measured microwave brightness temperature from an

airborne L-band Push Broom Microwave Radiometer

(PBMR) mounted on an aircraft can have a very high

spatial resolution at watershed scale (Peters-Lidard

et al. 2008). Thermal-based retrievals also offer po-

tential to infer root-zone soil moisture (Hain et al.

2009) and can complement microwave retrievals (Li

et al. 2010).

Model-based soil moisture products can be produced

using real-time/retrospective weather and climate sys-

tems (e.g., reanalysis products) or offline land surface

models. Real-time forecast systems may also be differ-

entiated by what they assimilate, such as screen-level

data in the European Centre for Medium-Range

Weather Forecasts (ECMWF) operational system

(Drusch and Viterbo 2007) or satellite soil moisture

retrievals in theMet Office (UKMO) operational global

model (Dharssi et al. 2011). Offline simulations can be

used as an experimental tool because it is easier to

compare models when they are all run with the same

forcing data. However, model-based soil moisture

products are largely dependent on accurate surface

forcing data (e.g., precipitation, radiation, and air tem-

perature) and reasonable land models and parameteri-

zation schemes.

Phase 2 of the North American Land Data Assimila-

tion System (NLDAS-2) is an offline modeling system,

running four land models [Noah, Mosaic, Sacramento

soil moisture accounting (SAC), and the Variable In-

filtration Capacity model (VIC)] within NLDAS-2 on a
1/88 grid over the continental United States. Daily gauge-

based precipitation is quite reliable in the United States

and is used in NLDAS-2 (Xia et al. 2012a). The other

forcing data are obtained from North American Re-

gional Reanalysis (NARR; Mesinger et al. 2006) with a

bias-correction process for downward solar radiation.

Temporal disaggregation is employed for daily gauge-

based precipitation by using hourly satellite and radar

observations (Xia et al. 2012a). Noah is the land model

of the National Centers for Environmental Prediction

(NCEP) operational regional and global weather and

climate models (Chen et al. 1997; Betts et al. 1997; Ek

et al. 2003). Mosaic is the land model for the NASA

global climate model (Koster and Suarez 1994, 1996),

but it has been replaced by the Catchment land surface

model for the recent upgrade of NASA’s GEOS-5

(Reale et al. 2009). VIC was developed as a large-

scale, grid-based, semidistributed hydrological model

that solves the full water and energy balances (Liang

et al. 1994; Wood et al. 1997). SAC is a grid-based

semidistributed hydrological model that solves a full

water balance (Koren et al. 1999) based on a lumped

conceptual hydrology model (Burnash et al. 1973). SAC

is calibrated for small catchments and used operation-

ally in National Weather Service (NWS) River Forecast

Centers (RFCs). Noah andMosaic were developedwithin

the surface–vegetation–atmosphere transfer scheme com-

munity for coupled land–atmospheric modeling. These

schemes focus on the interaction between land and at-

mosphere through surface energy andwater flux exchange.

SAC and VIC were developed by the hydrological com-

munity as uncoupled hydrological models with a focus on

prediction of variables such as streamflow. NLDAS-2 has

generated long-term (.35 years) hourly soil moisture

products at four soil layers down to 2m over the conti-

nental United States to support operational drought

monitoring (Mo and Lettenmaier 2014; Xia et al. 2014a).
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These soil moisture products have been evaluated using

in situ observations in Illinois and Oklahoma (Xia et al.

2014b). However, the previous evaluation by Xia et al.

(2014b) used only 6 years (1997–2002) rather than 13 years

(1999–2012) of observations.

The recently released NASMD provides a new op-

portunity to reevaluate NLDAS-2 soil moisture products

using a more comprehensive set of in situ observations.

Furthermore, updated soil property information has been

used to improve the accuracy of soil moisture measure-

ments for the Oklahoma Mesonet (Scott et al. 2013;

Ochsner et al. 2013). This provides a high-quality dataset

with over 13 years of observations with which to evaluate

NLDAS-2 products. This study evaluates NLDAS-2 soil

moisture using in situ soil moisture observations from

more than 385 sites in the continental United States from

1999 to 2012. This is the first part of a pair of papers. The

companion paper (Xia et al. 2015a) investigates the im-

pact of soil texture and vegetation type mismatches (site

observed vs model default) on soil moisture simulation in

Noah. After the description of data and methods used in

this study, soil moisture from the four models and their

ensemblemeans are evaluated using in situ data from 385

sites in seven states. This is followed by an evaluation of

seasonal variations in anomaly correlation and error

metrics, a comparison of the simulated and observed soil

moisture climatology at different soil layers, and a dis-

cussion of the reasons for the differences in performance

among the four models.

2. Data and methods

a. NASMD observed daily soil moisture

NASMD is the quality-controlled soil moisture data-

base developed and maintained by Texas A&M Uni-

versity. Soil moisture data are collected from numerous

networks across Canada, Mexico, and the United States,

covering a vast array of soil textures, land cover, eleva-

tion, and climate regimes. Currently, NASMD includes

data frommore than 27 observational networks and 1800

sites. NASMD also provides information about the soil

and vegetation characteristics at each site. NASMD uses

the land-cover classification scheme provided by the

Environmental Protection Agency’s National Land

Cover Data 2001 classes (http://www.epa.gov/mrlc/

classification.html). If soil information is not provided

by the observation network, these parameters are esti-

mated from the U.S. Department of Agriculture Soil

Survey Geographic Database (SSURGO). Soil moisture

data from some of the networks that are archived in

NASMD have previously been used for evaluating

model-simulated soil moisture, including the Oklahoma

Mesonet (Robock et al. 2003; Ford and Quiring 2014a,b;

Xia et al. 2014b), Illinois ClimateNetwork (Schaake et al.

2004; Fan et al. 2006; Xia et al. 2014b), and Soil Climate

Analysis Network (SCAN; Liu et al. 2011; Xia et al.

2014b). In this study, observation networks in seven states

were selected on the basis of 1) a high site density for each

network, 2) consistent use of sensors within each network

(to ensure the samemeasurement errors), and 3) at least 5

years of data. The seven regions that have networks that

met these criteria are Alabama (AL), Colorado (CO),

Michigan (MI), Nebraska (NE), Oklahoma (OK), West

Texas (WTX), andUtah (UT). This subset consists of 385

sites (Fig. 1). The soil moisture sensors, measurement

error, number of depths where measurements are made,

length of record, and website/contact information for all

seven networks are listed in Table 1. Each of the net-

works has a single operator, with the exception of AL,

which includes stations from both SCAN and U.S. Cli-

mate Reference Network (USCRN). Both SCAN and

USCRNemploy Stevens Hydra Probes at 5-, 10-, 20-, 50-,

and 100-cm depth, and thus SCAN and USCRN data

were evaluated together in AL. The measurement error

is estimated to be ;0.03m3m23 for most networks, ex-

cept for SCAN and USCRN (0.03–0.05m3m23) and

SNOTEL (0.03–0.06m3m23). The network operators

confirmed that most sensors do not accurately detect soil

moisture content when the water is frozen in the soil.

Therefore, measurements in Colorado, Michigan, Ne-

braska, and Utah are excluded during the cold season

(October–April).

b. NLDAS-2 simulated daily soil moisture

1) NLDAS-2 BACKGROUND

Meteorological forcing data (i.e., downward short-

wave radiation, downward longwave radiation, 2-m air

temperature, 2-m air specific humidity, surface pre-

cipitation, surface pressure, and 10-m wind speed) are

generated from the NARR product (Mesinger et al.

FIG. 1. Spatial distribution of 385 sites in AL, CO, MI, NE, OK,

WTX, and UT.
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2006) through a series of processes unique to NLDAS-2

(Xia et al. 2012a,b). These processes include spatial and

temporal downscaling, topographic adjustment for 2-m

air temperature and 10-m specific humidity, replacement

of the NARR precipitation with Climate Prediction

Center (CPC) gauge precipitation (Chen et al. 2008),

bias correction of the gauge precipitation with monthly

Parameter–Elevation Regressions on Independent

Slopes Model (PRISM) product (Daly et al. 1994), and

bias correction of the NARR downward shortwave ra-

diation withGOES-8 retrievals (Pinker et al. 2003). The

details are described in Cosgrove et al. (2003) and at the

NCEP/EnvironmentalModelingCenter (EMC)NLDAS-2

website (http://www.emc.ncep.noaa.gov/mmb/nldas/

LDAS8th/forcing/forcing_narr.shtml). The meteorologi-

cal forcing data extend from 1 January 1979 to present

with an hourly temporal resolution and 1/88 spatial reso-
lution (same as theNLDAS-2 grid). NLDAS-2 uses these

forcing data to drive four land surface models to produce

energy fluxes, water fluxes, and state variables (e.g., soil

moisture). Noah, Mosaic, SAC, and VIC simulate soil

moisture in different ways.

Noah has four soil layers: 0–10, 10–40, 40–100, and

100–200 cm and simulates soil moisture at the middle of

each soil layer (5, 25, 70, and 150 cm). The physics of

water movement between the layers is governed by a

discrete representation of Richards’ equation (Richards

1931), except that infiltration is governed by a concep-

tual parameterization that considers heterogeneity over

the area of precipitation and the local potential for in-

filtration. The ET process largely affects soil moisture

variation through both bare soil evaporation process

and vegetation transpiration process (e.g., through

vegetation roots in soils). All models except SACuse the

Penman–Monteith equation (Monteith 1965) to calcu-

late ET processes, as SAC is hydrological model without

energy budget calculation. Noah uses a dominant veg-

etation type with a varied root depth (e.g., 100 cm for

grassland and 200 cm for forest and woodland) at a given

grid, and Mosaic and VIC may have several vegetation

types at a given grid cell with a tiling method (Mitchell

et al. 2004). Mosaic uses a constant root depth of 40 cm

for all vegetation types, and VIC uses the varied root

depth from 135 to 300 cm (see Mitchell et al. 2004).

Mosaic has three soil layers: 0–10, 10–40, and 40–200,

with soil moisture simulated in the middle of the three

soil layers (5, 25, and 120 cm). Each grid box is further

divided into a maximum of 10 tiles representing differ-

ent vegetation. The soil water and energy balances in

each tile are simulated independently. Water movement

between the layers uses the one-dimensional Richards’

equation. Soil moisture at each soil depth is calculated

as a weighted average of the soil moisture from all tiles.T
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VIC also has three soil layers, with a 10-cm top layer

and spatially varying depths for the other two layers

(upper zone and lower zone). The root zone can span all

three layers, depending on vegetation types (forest,

grass, etc.). The upper and lower zones are operated as

the conceptual water storages. The top 10-cm soil layer

is intended to capture the fast dynamics of water

movement near the land surface. Water can only be

extracted from this layer through ET. The upper zone

soil water storage determines the partitioning of rainfall

into surface runoff and infiltration. The lower zone soil

water storage determines the amount of base flow. Like

Mosaic, VIC uses subgrid vegetation tiles to represent

the spatial heterogeneity of soil moisture distribution

within the grid cell and to determine surface runoff, in-

filtration, and base flow. Because water storage in the

upper and lower zones is conceptual and does not cor-

respond explicitly to soil layers, their storage capacities

must be determined through model calibration. VIC

storage capacities and other parameters were calibrated

using retrospective monthly historical hydrometeoro-

logical data (Nijssen et al. 1997).

SAC is also a storage-type model, which is conceptu-

ally different from the other three models as it does in-

clude energy budget computation, although it is similar

to VIC from a hydrologic viewpoint. It represents water

storage using five conceptual water storage components

divided into upper and lower zones, which are further

separated into tension and free water storage compo-

nents. The free water storage of the lower layer is further

divided into two substorages that control supplemental

(fast) and primary (slow) groundwater flows. Addi-

tionally, the model features a sixth variable water stor-

age component that accounts for the effects of varying

areas of saturation near streams. Together, these com-

ponents represent the active part of water storage in

each grid cell.

2) TRANSLATION OF SIMULATED SOIL MOISTURE

DATA TO COMMON SOIL LAYERS

A direct comparison with observations and among

models is not possible because the measurements are

made at different soil depths for the seven networks

(Table 1) and the simulated soil moisture from the four

models are defined at different soil layers. For SAC,

there is no specified soil layering scheme as discussed

above. To overcome this, we used a simple linear in-

terpolation technique or rescaling method to match the

in situ measurements with the four Noah soil layers

(depth to the middle of the soil layers are 5, 25, 70, and

150 cm). The simulated soil moisture data from the other

three models were also interpolated to match Noah.

Noah was chosen as the target because its soil layers are

uniform across the domain and it has the greatest

number of layers across themodels (four), allowing for a

more detailed vertical comparison with the measure-

ments. Mosaic data were converted to Noah soil layers

using a simple linear interpolation. VIC soil moisture

data were transferred to Noah layers by calculating the

weighted average of soil moisture in each VIC layer that

intersected each Noah layer. For grid cells where the

deepest VIC layer was shallower than the deepest Noah

layer, VIC soil moisture was assumed to be uniform

down to the bottom of the Noah layer.

Unlike the other NLDAS-2 models, the water storage

components of SAC are not tied to any soil depth or

thickness. This characteristic complicates intercompar-

ison with other models and validation against soil

moisture observations. This issue was addressed as part

of a recent frozen ground physics upgrade, as SAC

gained the ability to map the conceptual water storages

to distinct soil layers [SAC–Heat Transfer (HT); Koren

et al. 2010]. This upgrade has allowed for the accurate

simulation of the vertical profile of soil moisture and soil

temperature; however. it is not yet used in NLDAS-2.

As an interim solution for NLDAS-2, soil moisture

output was computed at distinct soil layers using a

postprocessing technique. The model parameter–soil

property relationships were used to convert the upper

and lower soil moisture capacities into soil moisture

contents at a number of soil layers. A physically based

HT component was used to determine the distribution

of liquid/frozen water in the layered soil column. Five

layer depths (i.e., 0–40, 40–80, 80–120, 120–160, and 160–

200 cm) are defined a priori to cover a 2-m soil profile

with thinner layers closer to the soil surface. The layered

soil moisture contents from the HT component were

then interpolated by weighted average to the same

layers as Noah (Xia et al. 2014b). See the NLDAS-2

website for more details (ftp://ldas.ncep.noaa.gov/

nldas2/sac_sm/Readme_Post-Processed_SAC_Soil_

Moisture.pdf). The postprocessing software can be

obtained from the NCEP/EMC Land-Hydrology group.

c. Evaluation method

Comparisons of simulated and observed soil moisture

can be done in two ways. The first is a direct comparison

between the simulated soil moisture and observations at

each individual site, but this kind of comparison is

problematic because of the differences in spatial scale.

Spatial variations in soil moisture are related to small-

scale hydrological processes, soil characteristics, and

vegetation cover (Crow and Wood 1999). These small-

scale soil moisture heterogeneities can lead to bias when

observations are directly compared with model simula-

tions. An alternative is to use a simple spatial average
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for the observed and simulated soil moisture values,

which is used in this study. This method can reduce the

spatial noise and provide a more meaningful compari-

son, although at the expense of averaging out error (i.e.,

bias) characteristics. Since some networks (e.g., SCAN)

have highly variable periods of record for different sta-

tions and depths, the spatial average is biased toward

stations with long periods of records. Xia et al. (2014b)

estimated this error to be less than 0.05m3m23 based on

comparisons in the U.S. Midwest. This simple spatial

average method has been used in many similar valida-

tion studies (Entin et al. 1999; Robock et al. 2003; Fan

et al. 2006; Xia et al. 2014b). The advanced soil moisture

upscaling techniques suggested by Crow et al. (2011) are

more robust methods for reducing sampling errors and

comparing point observations with grid cells. These

techniques could be used in the future when extra-high-

resolution (e.g., 1 km) NLDAS soil moisture products

are available.

The evaluationmetrics used in this study include root-

mean-square error (RMSE), Bias, relative bias (BiasR),

anomaly correlation (AC), and the Taylor skill score S.

It should be noted that the NLDAS-2 simulated and

observed soil moisture are spatially averaged from

multiple stations for each region (Table 1, Fig. 1). The

soil moisture anomaly is the temporal anomaly after the

mean seasonal cycle is removed. NLDAS-2 soil mois-

ture is compared to the measured soil moisture with the

RMSE, Bias, BiasR, and AC:

RMSE5
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and with the S criterion (Taylor 2001)

S5
4(11R)

[s1 (1/s)]2(11R0)
, (2)

where N is total number of days of soil moisture ob-

servation, SIMi (SIMAi
) is the simulated soil moisture

(anomaly), OBSi (OBSAi
) is the observed soil moisture

(anomaly), OBS (OBSA) is the temporal average of

observed soil moisture (anomaly), SIMA is the temporal

average of simulated soil moisture anomaly, R is the

correlation between the simulated and observed soil

moisture, R0 is the theoretical maximum correlation

(assumed to be 1), and s is the standard deviation of

simulated soil moisture normalized by the standard de-

viation of observed soil moisture.

The RMSE is used to assess overall error when

NLDAS-2 soil moisture is compared and Bias and BiasR
(Lohmann et al. 2004; Xia et al. 2012b) are used to detect

the model systematic error. Anomaly correlation is used

to evaluate model capacity to capture daily variability of

the observed soil moisture, and S is used to evaluate

model ability to capture both seasonal variability and

variance of the observed soil moisture. When the model

variance approaches the observed variance and R is

close to R0, the S approaches unity (a perfect score).

When the correlation becomes more negative or the

model variance approaches either zero or infinity, S

decreases toward zero (no skill). The variable S in-

creases linearly with the correlation when variance is

fixed. For a given R, S is proportional to the variance

when the model variance is small, and S is inversely

proportional to the variance when the model variance

is large.

3. Results

a. Overall evaluation and comparison

Taylor skill score for the four models and their en-

semble mean for all seven states is calculated using ob-

served and simulated soil moisture for a period of 5–14

years (Fig. 2), depending on the different networks

(Table 1). AL and UT show considerably lower S values

for 5-cm soil moisture than the other regions, although

model-to-model variability within AL and UT is quite

high. Generally speaking, Mosaic and SAC show the

best performance at 5- and 25-cm soil moisture, with

VIC consistently underperforming at these depths. All

models tend to underperform in WTX for 25 cm. This is

potentially due to the effect of frozen soils and the other

data quality problems that were not removed in WTX.
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Xia et al. (2015b) demonstrated that skill scores between

models and observations improved when the frozen soil

and the other data quality problem effects were re-

moved. The actual reason remains unclear and needs

further investigation. VIC performsmuch better for 70-cm

soil moisture; however, the multimodel ensemble

performs best at this depth.

Daily anomaly correlations (Fig. 3) show variability

between depths, regions, and models, similar to that in

S values. Based on anomaly correlations, Mosaic and

multimodel ensemble mean (MM) show the strongest

correspondence at the 5-cm depth, with VIC again con-

sistently underperforming. VIC performance is generally

improved at the 25-cm soil depth, but it is quite variable

between regions. As with S values, anomaly correlation

performance varies the least among models at the 70-cm

depth. In general, Mosaic, SAC, and MM showed consis-

tently better performance than Noah and VIC, based on

Taylor skill score and anomaly correlations (Table 2). The

causes of the variations in performance of the four models

remain unclear and will require further investigation.

Analysis of Taylor skill score and anomaly correla-

tions provide an evaluation of a model’s ability to cap-

ture soil moisture variability but cannot be used to

diagnose model error. For this purpose, RMSE, Bias,

and BiasR are calculated for each depth, region, and

model and are summarized in Tables 3 and 4 for 5- and

25-cm depths, respectively. For 5- and 25-cm soil mois-

ture, intermodel variability of RMSE scores was lowest

in AL, CO, NE, and WTX. SAC exhibited anomalously

high RMSE values in MI (5 cm) and OK (5 and 25 cm),

while VIC performed poorly in UT (5 cm). Values of

Bias and BiasR show that SAC and Mosaic consistently

underestimated 5- and 25-cm soil moisture, while VIC

and Noah somewhat less consistently overestimated 5-

and 25-cm soil moisture. Despite consistently drier soils

at 25 cm, Mosaic noticeably outperformed the other

models in CO and UT, and on averaged exhibited the

FIG. 2. Taylor skill score forMosaic, Noah, SAC,VIC, andMMat (a) 5-, (b) 25-, and (c) 70-cm soil depth. Shown in

(a) are AL, CO, MI, NE, OK, WTX, and UT. Shown in (b) are AL, CO, NE, OK, WTX, and UT. Shown in (c) are

AL, NE, OK, and WTX.
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smallest average 25-cm Bias values. Noah outperformed

the other models in AL, NE, OK, and WTX despite

consistently wetter 5-cm soils. Interestingly, SAC dra-

matically underperformed with regard to the other

models in MI and OK at 5 cm and AL, NE, OK, and

WTX at 25 cm. For both depths, SAC exhibited on av-

erage the highest RMSE and Bias values.

Soil moisture at 70 cm was only available at AL, NE,

OK, and WTX. At 70 cm, Noah, Mosaic, and SAC

consistently underestimated soil moisture, while VIC

did so only in AL and NE. Similar to 5- and 25-cm

depths, SAC exhibited the highest RMSE values at

70 cm, although the difference was less in NE. When the

RMSE values (Tables 3–5) are larger than the corre-

sponding instrument measurement errors for a given

state (Table 1), this indicates that the simulation errors

come from model limitations such as inadequate model

physical parameterizations, inappropriate model values,

and inaccurate forcing data. Another source of error is

that associated with comparing point observations at a

single depth to model layers.

The general pattern observed from RMSE and Bias

values is that Noah and VIC overestimate soil moisture,

while Mosaic and SAC underestimate soil moisture.

This makes theMM estimate closest to the observed soil

moisture. The soil moisture overestimation (un-

derestimation) in Noah and VIC (Mosaic and SAC) is

partially due to small (large) ET in Noah and VIC

(Mosaic and SAC), which will be discussed in section 3e.

According to the measurement error estimates in Table

1, most of the errors generated by all models and MM

are greater than the measurement error range, sug-

gesting that models and model forcings still have room

to improve.

b. Seasonal variation of statistics

The seven regions are divided into two groups for the

analysis of monthly variation of daily anomaly correla-

tion with depth because AL, NE, OK, and WTX have

FIG. 3. As in Fig. 2, but for daily anomaly correlation.

TABLE 2. Taylor skill score and AC averaged for all soil layers and

states for Mosaic, Noah, SAC, VIC, and MM.

Statistics Mosaic Noah SAC VIC MM

S 0.77 0.68 0.77 0.55 0.72

AC 0.75 0.73 0.70 0.66 0.72
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in situ soil moisture observations at all depths while CO,

MI, and UT have in situ soil moisture observations at

only one or two depths. Anomaly correlations vary

seasonally, by depth, and from state to state (Fig. 4).

Correlations are larger in the warm season (fromMay to

September) than in the cold season (from October to

April) for all four models. The total soil water includes

water in liquid and solid phases. Even though themodels

can simulate the total water, the sensors can usually only

measure the liquid part. In the cold season, when soil is

frozen, the measurements give the liquid soil moisture

only, while the models give the total soil moisture. For

this reason, the Nebraska network developer suggested

that measured soil moisture in the cold season should

not be used (K. Hubbard 2014, personal communica-

tion). Therefore, NE includes warm season soil moisture

only. Even if the soil is seldom frozen, the inconsis-

tency between measurements and model outputs in

the cold season will affect the anomaly correlation

(Xia et al. 2014b). The same issue could arise in WTX

in the shallower soil depths, but all data were used in

this study.

Anomaly correlations at 5 and 25 cm in CO, MI, and

UT (Fig. 5) show considerably different patterns of

monthly variability. July anomaly correlations in CO

decrease in all models at both the 5- and 25-cm depths. A

similar pattern is seen for July and August anomaly

correlations in UT. Correlations of 5-cm soil moisture in

MI show the least variability between models and

months. Monthly variability of RMSE with depth in-

dicates considerable differences between depth and

model (Fig. 6). Small RMSE appears in the upper soil

depths and large RMSE appears in lower soil depths for

all models in AL. Warm season RMSE values are

smaller than those during the cold season for all models

and depths, with the exception of SAC deep soil layers.

This is particularly true in WTX. In OK, all models ex-

cept for VIC show a fairly uniform RMSE, while VIC

exhibits a large (small) RMSE in the warm (cold)

season.

c. Comparison of simulated and observed daily soil
moisture climatology

Simulated and observed soil moisture climatology in

AL, NE, OK, andWTX for all soil depths are compared

in Fig. 7. In general, the annual range of the simulations

from the four models at three depths captures the ob-

served soil moisture range, with the exception of the

TABLE 3. Error metrics (RMSE, Bias, and BiasR) of 5-cm soil moisture calculated from four models and their MM at seven states (the

smallest value is represented in boldface for each state and error metric).

Error metrics Noah Mosaic SAC VIC MM

AL

RMSE (m3m23) 0.0686 0.0612 0.0670 0.0806 0.0637

Bias (m3m23) 0.0056 0.0142 20.0321 20.0332 0.0075

BiasR (%) 2.5 6.6 214.9 215.4 3.5

CO

RMSE (m3m23) 0.0526 0.0381 0.0749 0.0865 0.0382

Bias (m3m23) 0.0259 20.0242 20.0617 0.0692 0.0024

BiasR (%) 12.7 212.0 230.5 34.3 1.2
MI

RMSE (m3m23) 0.0540 0.0589 0.1124 0.0516 0.0598

Bias (m3m23) 20.0235 20.0376 20.1032 0.0086 20.0389

BiasR (%) 29.8 215.6 242.9 3.6 216.2

NE

RMSE (m3m23) 0.0254 0.0512 0.0467 0.0564 0.0208

Bias (m3m23) 0.0138 20.0478 20.0412 0.0481 20.0067
BiasR (%) 7.0 224.4 221.0 24.5 23.4

OK

RMSE (m3m23) 0.0357 0.0789 0.1030 0.0508 0.0429

Bias (m3m23) 20.0290 20.0734 20.1006 0.0431 20.0400

BiasR (%) 211.0 227.8 238.1 16.4 215.2

WTX

RMSE (m3m23) 0.0360 0.0875 0.0703 0.0899 0.0400

Bias (m3m23) 20.0072 20.0824 20.0633 0.0724 20.0201

BiasR (%) 23.7 242.6 232.7 47.4 210.4

UT

RMSE (m3m23) 0.0616 0.0535 0.0752 0.1003 0.0537

Bias (m3m23) 0.0374 20.0283 20.0506 0.0799 0.0098

BiasR (%) 22.2 216.9 230.1 47.6 5.8
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25- and 70-cm depths at AL and the 70-cm depth at NE. In

each of these three cases, model soil moisture is con-

sistently underestimated with regard to the observa-

tions. For the majority of conditions, VIC represents the

wettest soil simulation, while SAC represents the driest.

Consistent with error metrics in Tables 2–4, Mosaic and

SAC underestimate soil moisture while VIC over-

estimates observations. At the 5-cm soil depth in four

states (AL, NE, OK, and WTX), seasonal variations in

observed soil moisture (wet in winter and dry in sum-

mer) are successfully captured by all fourmodels, except

for VIC, which shows little seasonal variation. This is

attributable to the small bare soil fraction used in VIC

(Xia et al. 2014b). WhenVIC uses a relatively large bare

soil fraction, the seasonal variation of the observed top

5-cm soil moisture in Illinois can be well captured (Xia

TABLE 4. Error metrics (RMSE, Bias, and BiasR) of 25-cm soil moisture are calculated from four models and their MM at six states (the

smallest value is represented in boldface for each state and error metric).

Error metrics Noah Mosaic SAC VIC MM

AL

RMSE (m3m23) 0.0695 0.0513 0.0946 0.0458 0.0604

Bias (m3m23) 20.0583 20.0379 20.0870 20.0241 20.0509

BiasR (%) 220.7 213.4 230.4 28.4 217.8

CO

RMSE (m3m23) 0.0616 0.0293 0.0495 0.0851 0.0342

Bias (m3m23) 0.0557 20.0021 20.0375 0.0770 0.0233

BiasR (%) 28.4 21.1 219.1 39.2 11.9

NE

RMSE (m3m23) 0.0173 0.0217 0.0750 0.0698 0.0195

Bias (m3m23) 0.0047 20.0150 20.0701 0.0443 20.0115

BiasR (%) 2.3 27.2 233.9 21.4 25.5

OK

RMSE (m3m23) 0.0458 0.0654 0.1251 0.0425 0.0505

Bias (m3m23) 20.0432 20.0616 20.1230 0.0364 20.0478

BiasR (%) 215.4 221.9 243.8 13.0 217.0

WTX

RMSE (m3m23) 0.0791 0.0983 0.1422 0.0833 0.0847

Bias (m3m23) 20.0412 20.0778 20.1259 0.0347 20.0526

BiasR (%) 217.4 221.9 243.8 13.0 217.0

UT

RMSE (m3m23) 0.0617 0.0397 0.0530 0.0646 0.0398

Bias (m3m23) 0.0468 20.0034 20.0376 0.0515 0.0143

BiasR (%) 26.5 21.9 221.3 29.2 8.1

TABLE 5. Error metrics (RMSE, Bias, and BiasR) of 70-cm soil moisture are calculated from four models and their MM at four states (the

smallest value is represented in boldface for each state and error metric).

Error metrics Noah Mosaic SAC VIC MM

AL

RMSE (m3m23) 0.1078 0.0729 0.1021 0.1322 0.0988

Bias (m3m23) 20.0968 20.0511 20.0830 20.1088 20.0835

BiasR (%) 230.5 216.1 225.8 233.8 225.9

NE

RMSE (m3m23) 0.0340 0.0345 0.0355 20.0330 0.0340

Bias (m3m23) 20.0275 20.0280 20.0285 20.0265 20.0275

BiasR (%) 212.1 212.5 213.0 211.3 212.1

OK

RMSE (m3m23) 0.0569 0.0613 0.1264 0.0348 0.0535

Bias (m3m23) 20.0553 20.0589 20.1242 0.0314 20.0518

BiasR (%) 219.5 220.7 243.7 11.1 218.2

WTX

RMSE (m3m23) 0.0561 0.0570 0.1073 0.0660 0.0560

Bias (m3m23) 20.0337 20.0307 20.0957 0.0382 20.0305

BiasR (%) 216.4 214.9 246.5 18.6 214.8
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et al. 2014b). At 25-cm soil depths, all models basically

capture the seasonal variation of the observed soil

moisture in all four states except for WTX. In this case,

the models fail to capture the observed increases in soil

moisture that occur during the wet season (February–

May) in WTX. This is why all models have small Taylor

skill scores and anomaly correlations (Figs. 2, 3) at the

25-cm soil depth inWTX. In addition, it should be noted

that VIC shows little seasonal variability at 5- and 25-cm

soil depth over AL, OK, and WTX. At the 70-cm soil

depth, all models capture the seasonal variations in ob-

served soil moisture for all four states.

The simulated and observed soil moisture climatology

in CO, MI, and UT are also compared (Fig. 8). The

simulations from the four models are reasonably similar

to the observed soil moisture. All models can capture

the variations in observed soil moisture during the warm

season, although Noah and VIC have small seasonal

variation at 5-cm soil depth for all three states. VIC is in

the upper bound of the simulations and SAC andMosaic

are in the lower bound of the simulations. This means

that VIC tends to overestimate soil moisture whereas

Mosaic and SAC tend to underestimate soil moisture as

compared to the observations. Noah tends to fall in the

middle of the model simulations, although it over-

estimates the soil moisture in CO and UT. This is con-

sistent with the error metric analysis in Tables 2–4 in

which Noah and VIC (Mosaic and SAC) exhibit positive

(negative) Bias values. Overall, Mosaic and SAC are

able to accurately simulate the drying phases in CO

and UT.

d. Discussion

Model validation with in situ soil moisture observa-

tions from seven regions shows that three of the land

surface models (i.e., Noah, Mosaic, and SAC) can gen-

erally capture the variations in observed soil moisture,

such as the seasonal cycle and interannual variability.

Themodels are also able to accurately simulate the daily

soil moisture variability at different soil depths, albeit

with large intermodel variability dependent on location,

model, and soil depth. In contrast to the variability and

anomaly comparisons, large negative and positive Bias

values exist in many instances between model and

FIG. 4. Variation of daily anomaly correlation with month and depth for (from left to right) Noah, Mosaic, SAC, and VIC in (from top to

bottom) AL, NE, OK, and WTX.
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observation datasets. In particular, SAC largely un-

derestimates soil moisture and VIC largely over-

estimates soil moisture at all depths for most locations.

The differences among the four models may be due to

ET, as it represents the primary control of moisture

extraction from the soil. Daily ET climatologies for the

four models are compared in each state except UT

(Fig. 9), as it is very similar to the ET climatology of CO.

Mosaic and SAC simulate consistently larger ET than

Noah and VIC in all six regions. The increased (de-

creased) ET leads to decreased (increased) soil moisture

and consistent underestimation (overestimation) of ac-

tual soil moisture content. The only exception to this

pattern is Mosaic 70-cm soil depth, where Mosaic has

FIG. 5. Seasonal variation of daily anomaly correlation for Noah, Mosaic, SAC, and VIC in (a),(b) CO; (c) MI; and

(d),(e) UT.
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comparable or higher (AL) soil moisture than Noah.

This is because Mosaic sets the first two soil layers (0–10

and 10–40 cm) as root zone for all vegetation types (from

grassland to forest). Soil moisture is changed only

through vertical diffusion between the 70- and 10–40-cm

depths. Soil moisture underestimation is worse in SAC

than Mosaic, most likely because of soil texture–related

parameters (e.g., total water storage capacity, wilting

point, and hydraulic conductivity). Schaake et al. (2004)

demonstrate that total water storage capacity controls

the amount of soil water that can be simulated by each

land surface model. SAC has lower total water storage

capacity values over the continental United States than

Mosaic and simulates consistently drier soils than the

other models. Because all of the NLDAS-2 models use

the same forcing data, soil texture, and vegetation type,

the differences in the soil moisture simulations are due

to differences in model structure/philosophy (i.e., three

or four soil layers, different root-zone depth, lumped

conceptual hydrological model) and model parameters

(e.g., parameters related to soil texture and vegetation

type). It should be noted that there is a complex re-

lationship between soil moisture and the simulated

outputs such as ET, surface runoff, and base flow. A

complete water budget comparison is a more rigorous

method to conclusively determine the cause of the dif-

ferences in themodel-simulated soil moisture. This issue

will be addressed in a future paper.

It should be noted that Noah ET is much smaller than

the other models in CO. Noah heavily constrains aero-

dynamic conductance to reduce large sublimation dur-

ing the wintertime when the atmospheric boundary

layer is stable. The purpose is to overcome early snow-

melt occurrences in the model and to improve snow

water equivalent and streamflow simulation, in partic-

ular for their seasonal cycle simulation (Livneh et al.

2010). As a result, this leads to the unexpected small ET

simulation in cold regions such as mountainous regions

as most of the SNOTEL stations in CO are located in

mountains where the atmospheric boundary layer is

more frequently stable. This issue has been addressed by

Xia et al. (2015c).

FIG. 6. Variation of RMSE (m3m23) between the simulated and observed soil moisture as a function of month and depth for (from left to

right) Noah, Mosaic, SAC, and VIC in (from top to bottom) AL, NE, OK, and WTX.
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In summary, errors between the simulated and ob-

served soil moisture may come from 1) instrument mea-

surement errors (see Table 1); 2) model structure errors

(e.g., different soil layers, different root zones, andmodel

physics deficiencies); 3) model parameter errors; 4)

forcing data errors (e.g., precipitation, air temperature,

radiation, and wind); and 5) errors caused by using soil

texture, vegetation type, or land-cover parameters that

are different than what exists at the measurement sites.

Importantly, the interpolation and averaging techniques

employed in this study inevitably introduce error as well.

The error introduced by soil, vegetation, and land-cover

parameterization is further examined in the second part

of our companion paper using Noah (Xia et al. 2015a).

4. Conclusions

In this study, soil moisture observations from seven

observational networks with different biome and climate

conditions were used to evaluate multimodel simulated

soil moisture products in NLDAS-2: 385 sites in AL,

CO, MI, NE, OK, WTX, and UT were used to evaluate

0–10-cm soil moisture; 321 sites were used to evaluate

10–40-cm soil moisture; and 217 sites in AL, NE, OK,

and WTX were used to evaluate 40–100-cm soil mois-

ture. Soil moisture was spatially averaged in each region

to reduce noise. Simulation skill was assessed using

anomaly correlation and Taylor skill score to evaluate

the variation and standard deviation of the simulated

soil moisture from the four models and their ensemble

mean. Error metrics including RMSE, Bias, and BiasR
were used to determine total and systematic error in the

simulated soil moisture from the four models and their

ensemble mean. In general, the four NLDAS-2 models

can capture broad features of soil moisture variations

in all three soil layers in seven states, except for the

10–40-cm soil layer inWTX and the 40–100-cm soil layer

in AL, where there are small anomaly correlations.

FIG. 7. Comparison of the simulated and observed soil moisture climatology at (top) 5-, (middle) 25-, and (bottom) 70-cm soil depth in

(a)–(c) AL, (d)–(f) NE, (g)–(i) OK, and (j)–(l) WTX.
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Mosaic, MM, and SAC have the highest simulation

skill, VIC has the lowest simulation skill, and Noah’s

performance is in between. Generally speaking, there

are stronger (weaker) anomaly correlations and smaller

(larger) RMSE in summer (winter). In the top two soil

layers, Noah and VIC overestimate the observed soil

moisture, and Mosaic and SAC underestimate the

observed soil moisture. In the 40–100-cm soil layer,

all models, except for VIC, underestimate the observed

soil moisture.

Anomaly correlations and RMSEs show strong sea-

sonal variations that vary by model and soil layer.

Generally speaking, there are stronger anomaly corre-

lations in summer and weaker anomaly correlations in

FIG. 8. As in Fig. 7, but for (a),(b) CO; (c) MI; and (d),(e) UT for fewer soil depths.
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winter. There are small RMSEs in lower soil layers in

summer and large RMSEs in upper soil layers in winter.

Overall results show that Noah and VIC have wetter

soils and Mosaic and SAC have drier soils than the ob-

served soil moisture. The major reason is that Noah and

VIC have less ET and Mosaic and SAC have more ET.

Besides ET, soil hydraulic parameters and model pa-

rameters also play an important role in soil moisture

simulation. Although all models employ common fields

of vegetation and soil class, model parameters such as

FIG. 9. Comparison of daily ET climatology for Noah, Mosaic, SAC, and VIC in (a) AL, (b) CO, (c) MI, (d) NE,

(e) OK, and (f) WTX (the daily ET climatology in UT is very similar to the one in CO and is not shown).
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soil layer thickness, number of soil layers, root depth,

root density, and seasonal cycle of vegetation (Mitchell

et al. 2004) may be different to avoid negating the legacy

of calibration or tuning invested over the past decades.

In addition, soil moisture and ET are strongly affected

by soil texture and vegetation type, and there are strong

nonlinear interactions between soil moisture and ET.

When site-observed soil texture and vegetation type are

different from model gridded values, this will definitely

affect the accuracy and representativeness of soil mois-

ture simulations. The second part of this companion

paper will address this issue (Xia et al. 2015a).
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